root extraction - definition. What is root extraction
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

FUNCTION
Surds and Indices; Surds and indices; Radicand; Nth root algorithm; Nth-root algorithm; Properties of radicals; N-th root; Radical root; N-th root algorithm; Nth roots; Fourth root; Fifth root; Sixth root; Surd (mathematics); Radical expression; ؇; Root extraction; Radical signs; Principal root; Radication; 3-root; Twelfth root; Eleventh root; Tenth root; Ninth root; Eighth root; Seventh root; Nth root extraction
  • The three 3rd roots of 1
  • The three 3rd roots of −1,<br /> one of which is a negative real
  • The four 4th roots of −1,<br /> none of which are real

Radication         
·noun The disposition of the roots of a plant.
II. Radication ·noun The process of taking root, or state of being rooted; as, the radication of habits.
Nth root         
In mathematics, an nth root of a number x is a number r which, when raised to the power n, yields x:
Relationship extraction         
TYPE OF TEXT MINING
Relationship Extraction; Relation extraction
A relationship extraction task requires the detection and classification of semantic relationship mentions within a set of artifacts, typically from text or XML documents. The task is very similar to that of information extraction (IE), but IE additionally requires the removal of repeated relations (disambiguation) and generally refers to the extraction of many different relationships.

ويكيبيديا

Nth root

In mathematics, an nth root of a number x is a number r which, when raised to the power n, yields x:

r n = x , {\displaystyle r^{n}=x,}

where n is a positive integer, sometimes called the degree of the root. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an nth root is a root extraction.

For example, 3 is a square root of 9, since 32 = 9, and −3 is also a square root of 9, since (−3)2 = 9.

Any non-zero number considered as a complex number has n different complex nth roots, including the real ones (at most two). The nth root of 0 is zero for all positive integers n, since 0n = 0. In particular, if n is even and x is a positive real number, one of its nth roots is real and positive, one is negative, and the others (when n > 2) are non-real complex numbers; if n is even and x is a negative real number, none of the nth roots is real. If n is odd and x is real, one nth root is real and has the same sign as x, while the other (n – 1) roots are not real. Finally, if x is not real, then none of its nth roots are real.

Roots of real numbers are usually written using the radical symbol or radix       {\displaystyle {\sqrt {{~^{~}}^{~}\!\!}}} , with x {\displaystyle {\sqrt {x}}} denoting the positive square root of x if x is positive; for higher roots, x n {\displaystyle {\sqrt[{n}]{x}}} denotes the real nth root if n is odd, and the positive nth root if n is even and x is positive. In the other cases, the symbol is not commonly used as being ambiguous. In the expression x n {\displaystyle {\sqrt[{n}]{x}}} , the integer n is called the index and x is called the radicand.

When complex nth roots are considered, it is often useful to choose one of the roots, called principal root, as a principal value. The common choice is to choose the principal nth root of x as the nth root with the greatest real part, and when there are two (for x real and negative), the one with a positive imaginary part. This makes the nth root a function that is real and positive for x real and positive, and is continuous in the whole complex plane, except for values of x that are real and negative.

A difficulty with this choice is that, for a negative real number and an odd index, the principal nth root is not the real one. For example, 8 {\displaystyle -8} has three cube roots, 2 {\displaystyle -2} , 1 + i 3 {\displaystyle 1+i{\sqrt {3}}} and 1 i 3 . {\displaystyle 1-i{\sqrt {3}}.} The real cube root is 2 {\displaystyle -2} and the principal cube root is 1 + i 3 . {\displaystyle 1+i{\sqrt {3}}.}

An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd or a radical. Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression, and if it contains no transcendental functions or transcendental numbers it is called an algebraic expression.

Roots can also be defined as special cases of exponentiation, where the exponent is a fraction:

x n = x 1 / n . {\displaystyle {\sqrt[{n}]{x}}=x^{1/n}.}

Roots are used for determining the radius of convergence of a power series with the root test. The nth roots of 1 are called roots of unity and play a fundamental role in various areas of mathematics, such as number theory, theory of equations, and Fourier transform.